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Abstract

The new BIS 1998 capital requirements for market risks allows banks to use internal

models to assess regulatory capital related to both general market risk and credit risk for

their trading book. This paper reviews the current proposed industry sponsored Credit

Value-at-Risk methodologies. First, the credit migration approach, as proposed by JP

Morgan with CreditMetrics, is based on the probability of moving from one credit

quality to another, including default, within a given time horizon. Second, the option

pricing, or structural approach, as initiated by KMV and which is based on the asset

value model originally proposed by Merton (Merton, R., 1974. Journal of Finance 28,

449±470). In this model the default process is endogenous, and relates to the capital

structure of the ®rm. Default occurs when the value of the ®rmÕs assets falls below some

critical level. Third, the actuarial approach as proposed by Credit Suisse Financial

Products (CSFP) with CreditRisk+ and which only focuses on default. Default for

individual bonds or loans is assumed to follow an exogenous Poisson process. Finally,

McKinsey proposes CreditPortfolioView which is a discrete time multi-period model

where default probabilities are conditional on the macro-variables like unemployment,

the level of interest rates, the growth rate in the economy, . . . which to a large extent

drive the credit cycle in the economy. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

BIS 1998 is now in place, with internal models for market risk, both general
and speci®c risk, implemented at the major G-10 banks, and used every day to
report regulatory capital for the trading book. The next step for these banks is
to develop a VaR framework for credit risk. The current BIS requirements for
``speci®c risk'' are quite loose, and subject to broad interpretation. To qualify
as an internal model for speci®c risk, the regulator should be convinced that
``concentration risk'', ``spread risk'', ``downgrade risk'' and ``default risk'' are
appropriately captured, the exact meaning of ``appropriately'' being left to the
appreciation of both the bank and the regulator. The capital charge for speci®c
risk is then the product of a multiplier, whose minimum volume has been
currently set to 4, times the sum of the VaR at the 99% con®dence level for
spread risk, downgrade risk and default risk over a 10-day horizon.

There are several issues with this piecemeal approach to credit risk. First,
spread risk is related to both market risk and credit risk. Spreads ¯uctuate
either, because equilibrium conditions in capital markets change, which in turn
a�ect credit spreads for all credit ratings, or because the credit quality of the
obligor has improved or deteriorated, or because both conditions have oc-
curred simultaneously. Downgrade risk is pure credit spread risk. When the
credit quality of an obligor deteriorates then the spread relative to the Treasury
curve widens, and vice versa when the credit quality improves. Simply adding
spread risk to downgrade risk may lead to double counting. In addition, the
current regime assimilates the market risk component of spread risk to credit
risk, for which the regulatory capital multiplier is 4 instead of 3.

Second, this issue of disentangling market risk and credit risk driven com-
ponents in spread changes is further obscured by the fact that often market
participants anticipate forthcoming credit events before they actually happen.
Therefore, spreads already re¯ect the new credit status when the rating agencies
e�ectively downgrade an obligor, or put him on ``credit watch''.

Third, default is just a special case of downgrade, when the credit quality has
deteriorated to the point where the obligor cannot service anymore its debt
obligations. An adequate credit-VaR model should therefore address both
migration risk, i.e. credit spread risk, and default risk in a consistent and in-
tegrated framework.

Finally, changes in market and economic conditions, as re¯ected by changes
in interest rates, the stock market indexes, exchange rates, unemployment rates,
etc. may a�ect the overall pro®tability of ®rms. As a result, the exposures of the
various counterparts to each obligor, as well as the probabilities of default and
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of migrating from one credit rating to another. In fact, the ultimate framework
to analyze credit risk calls for the full integration of market risk and credit risk.
So far no existing practical approach has yet reached this stage of sophistication.

During the last two years a number of initiatives have been made public.
CreditMetrics from JP Morgan, ®rst published and well publicized in 1997, is
reviewed in the next section. CreditMetricsÕ approach is based on credit mi-
gration analysis, i.e. the probability of moving from one credit quality to an-
other, including default, within a given time horizon, which is often taken
arbitrarily as 1 year. CreditMetrics models the full forward distribution of the
values of any bond or loan portfolio, say 1 year forward, where the changes in
values are related to credit migration only, while interest rates are assumed to
evolve in a deterministic fashion. Credit-VaR of a portfolio is then derived in a
similar fashion as for market risk. It is simply the percentile of the distribution
corresponding to the desired con®dence level.

KMV Corporation, a ®rm specialized in credit risk analysis, has developed
over the last few years a credit risk methodology, as well as an extensive da-
tabase, to assess default probabilities and the loss distribution related to both
default and migration risks. KMVÕs methodology di�ers somewhat from
CreditMetrics as it relies upon the ``Expected Default Frequency'', or EDF, for
each issuer, rather than upon the average historical transition frequencies
produced by the rating agencies, for each credit class.

Both approaches rely on the asset value model originally proposed by
Merton (1974), but they di�er quite substantially in the simplifying assump-
tions they require in order to facilitate its implementation. How damaging are,
in practice, these compromises to a satisfactory capture of the actual com-
plexity of credit measurement stays an open issue. It will undoubtedly attract
many new academic developments in the years to come. KMVÕs methodology
is reviewed in Section 3.

At the end of 1997, Credit Suisse Financial Products (CSFP) released a new
approach, CreditRisk+, which only focuses on default. Section 4 examines
brie¯y this model. CreditRisk+ assumes that default for individual bonds, or
loans, follows a Poisson process. Credit migration risk is not explicitly modeled
in this analysis. Instead, CreditRisk+ allows for stochastic default rates which
partially account, although not rigorously, for migration risk.

Finally, McKinsey, a consulting ®rm, now proposes its own model, Cred-
itPortfolioView, which, like CreditRisk+, measures only default risk. It is a
discrete time multi-period model, where default probabilities are a function of
macro-variables such as unemployment, the level of interest rates, the growth
rate in the economy, government expenses, foreign exchange rates, which also
drive, to a large extent, credit cycles. CreditPortfolioView is examined in
Section 5.

From the actual comparison of these models on various benchmark port-
folios, it seems that any of them can be considered as a reasonable internal
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model to assess regulatory capital related to credit risk, for straight bonds and
loans without option features. 1 All these models have in common that they
assume deterministic interest rates and exposures. While, apparently, it is not
too damaging for simple ``vanilla'' bonds and loans, these models are inap-
propriate to measure credit risk for swaps and other derivative products. In-
deed, for these instruments we need to propose an integrated framework that
allows to derive, in a consistent manner, both the credit exposure and the loss
distribution. Currently, none of the proposed models o�ers such an integrated
approach. In order to measure credit risk of derivative securities, the next
generation of credit models should allow at least for stochastic interest rates,
and possibly default and migration probabilities which depend on the state of
the economy, e.g. the level of interest rates and the stock market. According to
Standard & PoorÕs, only 17 out of more than 6700 rated corporate bond issuers
it has rated defaulted on US $4.3 billion worth of debt in 1997, compared with
65 on more than US $20 billion in 1991. In Fig. 1 we present the record of
defaults from 1985 to 1997. It can be seen that in 1990 and 1991, when the
world economies were in recession, the frequency of defaults was quite large. In
recent years, characterized by a sustained growth economy, the default rate has
declined dramatically.

2. CreditMetrics 2 and CreditVaR I 3

CreditMetrics/CreditVaR I are methodologies based on the estimation of
the forward distribution of the changes in value of a portfolio of loan and bond
type products 4 at a given time horizon, usually 1 year. The changes in value

1 IIF (the International Institute of Finance) and ISDA (the International Swap Dealers

Association) have conducted an extensive comparison of these models on several benchmark

portfolios of bonds and loans. More than 20 international banks participated in this experiment. A

detailed account of the results will be published in the fall of 1999.
2 CreditMetrics is a trademark of JP Morgan. The technical document, CreditMetrics (1997)

provides a detailed exposition of the methodology, illustrated with numerical examples.
3 CreditVaR is CIBC's proprietary credit value at risk model that is based on the same principles

as CreditMetrics for the simple version implemented at CIBC, CreditVaR I, to capture speci®c risk

for the trading book. A more elaborate version, CreditVaR II, extends CreditMetrics framework to

allow for stochastic interest rates in order to assess credit risk for derivatives, and incorporates

credit derivatives. Note that to price credit derivatives we need to use ``risk neutral'' probabilities

which are consistent with the actual probabilities of default in the transition matrix.
4 CreditMetricsÕ approach applies primarily to bonds and loans which are both treated in the

same manner, and it can be easily extended to any type of ®nancial claims as receivables, loan

commitments, ®nancial letters of credit for which we can derive easily the forward value at the risk

horizon, for all credit ratings. For derivatives, like swaps or forwards, the model needs to be

somewhat tweaked, since there is no satisfactory way to derive the exposure and the loss

distribution in the proposed framework, which assumes deterministic interest rates.
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are related to the eventual migrations in credit quality of the obligor, both up
and downgrades, as well as default.

In comparison to market-VaR, credit-VaR poses two new challenging dif-
®culties. First, the portfolio distribution is far from being normal, and second,
measuring the portfolio e�ect due to credit diversi®cation is much more
complex than for market risk.

While it was legitimate to assume normality of the portfolio changes due to
market risk, it is no longer the case for credit returns which are by nature
highly skewed and fat-tailed as shown in Figs. 2 and 6. Indeed, there is limited
upside to be expected from any improvement in credit quality, while there is
substantial downside consecutive to downgrading and default. The percentile
levels of the distribution cannot be any longer estimated from the mean and
variance only. The calculation of VaR for credit risk requires simulating the
full distribution of the changes in portfolio value.

To measure the e�ect of portfolio diversi®cation we need to estimate the
correlations in credit quality changes for all pairs of obligors. But, these cor-
relations are not directly observable. CreditMetrics/CreditVaR I base their
evaluation on the joint probability of asset returns, which itself results from
strong simplifying assumptions on the capital structure of the obligor, and on
the generating process for equity returns. This is clearly a key feature of
CreditMetrics/CreditVaR I on which we will elaborate in the next section.

Finally, CreditMetrics/CreditVaR I, as the other approaches reviewed in
this paper, assumes no market risk since forward values and exposures are
simply derived from deterministic forward curves. The only uncertainty in
CreditMetrics/CreditVaR I relates to credit migration, i.e. the process of

Fig. 1. Corporate defaults, worldwide (source: Standard & Poor's).
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moving up or down the credit spectrum. In other words, credit risk is ana-
lyzed independently of market risk, which is another limitation of this ap-
proach.

2.1. CreditMetrics/CreditVaR I framework

CreditMetrics/CreditVaR I risk measurement framework is best summa-
rized by Fig. 3 which shows the two main building blocks, i.e. ``value-at-risk
due to credit'' for a single ®nancial instrument, then value-at-risk at the
portfolio level which accounts for portfolio diversi®cation e�ects (``Portfolio
Value-at-Risk due to Credit''). There are also two supporting functions,
``correlations'' which derives the asset return correlations which are used to
generate the joint migration probabilities, and ``exposures'' which produces the
future exposures of derivative securities, like swaps.

2.2. Credit-Var for a bond (building block #1)

The ®rst step is to specify a rating system, with rating categories, together
with the probabilities of migrating from one credit quality to another over the
credit risk horizon. This transition matrix is the key component of the credit-
VaR model proposed by JP Morgan. It can be MoodyÕs, or Standard & PoorÕs,
or the proprietary rating system internal to the bank. A strong assumption
made by CreditMetrics/CreditVaR I is that all issuers are credit-homogeneous

Fig. 2. Comparison of the distributions of credit returns and market returns (source: CIBC).
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within the same rating class, with the same transition probabilities and the
same default probability. KMV departs from CreditMetrics/CreditVaR I in the
sense that in KMVÕs framework each issuer is speci®c, and is characterized by
his own asset returns distribution, its own capital structure and its own default
probability.

Second, the risk horizon should be speci®ed. It is usually 1 year, although
multiple horizons could be chosen, like 1±10 years, when one is concerned by
the risk pro®le over a longer period of time as it is needed for long dated il-
liquid instruments.

The third phase consists of specifying the forward discount curve at the risk
horizon(s) for each credit category, and, in the case of default, the value of the
instrument which is usually set at a percentage, named the ``recovery rate'', of
face value or ``par''.

In the ®nal step, this information is translated into the forward distribution
of the changes in portfolio value consecutive to credit migration.

The following example taken from the technical document of CreditMetrics
illustrates the four steps of the credit-VaR model.

Example 1. Credit-VaR for a senior unsecured BBB rated bond maturing ex-
actly in 5 years, and paying an annual coupon of 6%.

Fig. 3. CreditMetrics/CreditVaR I framework: The 4 building blocks (source: JP Morgan).
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Step 1: Specify the transition matrix.
The rating categories, as well as the transition matrix, are chosen from a

rating system (Table 1).
In the case of Standard & PoorÕs there are 7 rating categories, the highest

credit quality being AAA, and the lowest, CCC; the last state is default. De-
fault corresponds to the situation where an obligor cannot make a payment
related to a bond or a loan obligation, whether it is a coupon or the redemption
of principal. ``Pari passu'' clauses are such that when an obligor defaults on
one payment related to a bond or a loan, he is technically declared in default on
all debt obligations.

The bond issuer has currently a BBB rating, and the italicized line corre-
sponding to the BBB initial rating in Table 1 shows the probabilities estimated
by Standard & PoorÕs for a BBB issuer to be, in 1 year from now, in one of the
8 possible states, including default. Obviously, the most probable situation is
for the obligor to stay in the same rating category, i.e. BBB, with a probability
of 86.93%. The probability of the issuer defaulting within 1 year is only 0.18%,
while the probability of being upgraded to AAA is also very small, i.e. 0.02%.
Such transition matrix is produced by the rating agencies for all initial ratings.
Default is an absorbing state, i.e. an issuer who is in default stays in default.

MoodyÕs also publishes similar information. These probabilities are based
on more than 20 years of history of ®rms, across all industries, which have
migrated over a 1 year period from one credit rating to another. Obviously, this
data should be interpreted with care since it represents average statistics across
a heterogeneous sample of ®rms, and over several business cycles. For this
reason many banks prefer to rely on their own statistics which relate more
closely to the composition of their loan and bond portfolios.

MoodyÕs and Standard & PoorÕs also produce long-term average cumulative
default rates, as shown in Table 2 in a tabular form and in Fig. 4 in a graphical
form. For example, a BBB issuer has a probability of 0.18% to default within 1
year, 0.44% to default in 2 years, 4.34% to default in 10 years.

Table 1

Transition matrix: Probabilities of credit rating migrating from one rating quality to another,

within 1 yeara

Initial

rating

Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

a Source: Standard & PoorÕs CreditWeek (April 15, 1996).
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Tables 1 and 2 should in fact be consistent with one another. From Table 2
we can back out the transition matrix which best replicates, in the least square
sense, the average cumulative default rates. Indeed, assuming that the process
for default is Markovian and stationary, then multiplying the 1-year transition
matrix n times generates the n-year matrix. The n-year default probabilities are
simply the values in the last default column of the transition matrix, and should
match the column in year n of Table 2.

Actual transition and default probabilities vary quite substantially over the
years, depending whether the economy is in recession, or in expansion. (See

Fig. 4. Average cumulative default rates (%) (source: Standard & Poor's CreditWeek April 15,

1996).

Table 2

Average cumulative default rates (%)a

Term 1 2 3 4 5. . . 7. . . 10. . . 15

AAA 0.00 0.00 0.07 0.15 0.24. . . 0.66. . . 1.40. . . 1.40

AA 0.00 0.02 0.12 0.25 0.43. . . 0.89. . . 1.29. . . 1.48

A 0.06 0.16 0.27 0.44 0.67. . . 1.12. . . 2.17. . . 3.00

BBB 0.18 0.44 0.72 1.27 1.78. . . 2.99. . . 4.34. . . 4.70

BB 1.06 3.48 6.12 8.68 10.97. . . 14.46. . . 17.73. . . 19.91

B 5.20 11.00 15.95 19.40 21.88. . . 25.14. . . 29.02. . . 30.65

CCC 19.79 26.92 31.63 35.97 40.15. . . 42.64. . . 45.10. . . 45.10

a Source: Standard & PoorÕs CreditWeek (April 15, 1996).
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Fig. 1 for default rates.) When implementing a model which relies on transition
probabilities, one may have to adjust the average historical values as shown in
Table 1, to be consistent with oneÕs assessment of the current economic envi-
ronment. MoodyÕs study by Carty and Lieberman (1996) provides historical
default statistics, both the mean and standard deviation, by rating category for
the population of obligors they have rated during the period 1920±1996 (see
Table 3).

Step 2: Specify the credit risk horizon.
The risk horizon is usually 1 year, and is consistent with the transition

matrix shown in Table 1. But this horizon is purely arbitrary, and is mostly
dictated by the availability of the accounting data and ®nancial reports pro-
cessed by the rating agencies. In KMVÕs framework, which relies on market
data as well as accounting data, any horizon can be chosen from a few days to
several years. Indeed, market data can be updated daily while assuming the
other ®rm characteristics stay constant until new information becomes avail-
able.

Step 3: Specify the forward pricing model.
The valuation of a bond is derived from the zero-curve corresponding to the

rating of the issuer. Since there are 7 possible credit qualities, 7 ``spread'' curves
are required to price the bond in all possible states, all obligors within the same
rating class being marked-to-market with the same curve. The spot zero curve
is used to determine the current spot value of the bond. The forward price of
the bond in 1 year from now is derived from the forward zero-curve, 1 year
ahead, which is then applied to the residual cash ¯ows from year one to the
maturity of the bond. Table 4 gives the 1-year forward zero-curves for each
credit rating.

Empirical evidence shows that for high grade investment bonds the spreads
tend to increase with time to maturity, while for low grade, like CCC the
spread tends to be wider at the short end of the curve than at the long end, as
shown in Fig. 5.

Table 3

One-year default rates by rating, 1970±1995a

Credit rating One-year default rate

Average (%) Standard deviation (%)

Aaa 0.00 0.0

Aa 0.03 0.1

A 0.01 0.0

Baa 0.13 0.3

Ba 1.42 1.3

B 7.62 5.1

a Source: Carty and Lieberman (1996).
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The 1-year forward price of the bond, if the obligor stays BBB, is then:

VBBB � 6� 6

1:0410
� 6

�1:0467�2 �
6

�1:0525�3 �
106

�1:0563�4 � 107:55

If we replicate the same calculations for each rating category we obtain the
values shown in Table 5. 5

If the issuer defaults at the end of the year, we assume that not everything is
lost. Depending on the seniority of the instrument, a recovery rate of par value
is recuperated by the investor. These recovery rates are estimated from his-
torical data by the rating agencies. Table 6 shows the recovery rates for bonds
by di�erent seniority classes as estimated by MoodyÕs. 6 In our example the
recovery rate for senior unsecured debt is estimated to be 51.13%, although the
estimation error is quite large and the actual value lies in a fairly large con®-
dence interval.

In the Monte Carlo simulation used to generate the loss distribution, it is
assumed that the recovery rates are distributed according to a beta distribution
with the same mean and standard deviation as shown in Table 6.

Step 4: Derive the forward distribution of the changes in portfolio value.

5 CreditMetrics calculates the forward value of the bonds, or loans, cum compounded coupons

paid out during the year.
6 Cf. Carty and Lieberman (1996). See also Altman and Kishore (1996, 1998) for similar

statistics.

Table 4

One-year forward zero-curves for each credit rating (%)a

Category Year 1 Year 2 Year 3 Year 4

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

a Source: CreditMetrics, JP Morgan.
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The distribution of the changes in the bond value, at the 1-year horizon, due
to an eventual change in credit quality is shown Table 7 and Fig. 6. This
distribution exhibits long downside tails. The ®rst percentile of the distribution
of DV, which corresponds to credit-VaR at the 99% con®dence level is ÿ23:91.
It is much larger than if we computed the ®rst percentile assuming a normal
distribution for DV. In that case credit-VaR at the 99% con®dence level would
be only ÿ7:43. 7

Spread Curve

Time to
maturity

CCC

B

A

Treasuries

Fig. 5. Spread curves for di�erent credit qualities.

Table 5

One-year forward values for a BBB bonda

Year-end rating Value ($)

AAA 109.37

AA 109.19

A 108.66

BBB 107.55

BB 102.02

B 98.10

CCC 83.64

Default 51.13

a Source: CreditMetrics, JP Morgan.

7 The mean, m, and the variance, r2, of the distribution for DV are: m � mean�DV � �P
i piDVi � 0:02%� 1:82� 0:33%� 1:64� � � � � 0:18%� �ÿ56:42� � ÿ0:46; r2 � variance�DV � �P
i pi�DVi ÿ m�2 � 0:02%�1:82� 0:46�2 � 0:33%�1:64� 0:46�2 � � � � � 0:18%�ÿ56:42� 0:46�2 �

8:95 and r � 2:99: The ®rst percentile of a normal distribution M�m; r2� is �mÿ 2:33r�, i.e. ÿ7:43.
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2.3. Credit-VaR for a loan or bond portfolio (building block #2)

First, consider a portfolio composed of 2 bonds with an initial rating of
BB and A, respectively. Given the transition matrix shown in Table 1, and

Table 7

Distribution of the bond values, and changes in value of a BBB bond, in 1 yeara

Year-end rating Probability of state: p (%) Forward price: V ($) Change in value: DV ($)

AAA 0.02 109.37 1.82

AA 0.33 109.19 1.64

A 5.95 108.66 1.11

BBB 86.93 107.55 0

BB 5.30 102.02 ÿ5.53

B 1.17 98.10 ÿ9.45

CCC 0.12 83.64 ÿ23.91

Default 0.18 51.13 ÿ56.42

a Source: CreditMetrics, JP Morgan.

Table 6

Recovery rates by seniority class (% of face value, i.e., ``par'')a

Seniority class Mean (%) Standard deviation (%)

Senior secured 53.80 26.86

Senior unsecured 51.13 25.45

Senior subordinated 38.52 23.81

Subordinated 32.74 20.18

Junior subordinated 17.09 10.90

a Source: Carty and Lieberman (1996).

∆

Fig. 6. Histogram of the 1-year forward prices and changes in value of a BBB bond.
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assuming no correlation between changes in credit quality, we can then derive
easily the joint migration probabilities shown in Table 8. Each entry is simply
the product of the transition probabilities for each obligor. For example, the
joint probability that obligor #1 and obligor #2 stay in the same rating class is

73:32% � 80:53%� 91:05%;

where 80.53% is the probability that obligor #1 keeps his current rating BB,
and 91.05% is the probability that obligor #2 stays in rating class A.

Unfortunately, this table is not very useful in practice when we need to
assess the diversi®cation e�ect on a large loan or bond portfolio. Indeed, the
actual correlations between the changes in credit quality are di�erent from
zero. And it will be shown in Section 5 that the overall credit-VaR is in fact
quite sensitive to these correlations. Their accurate estimation is therefore
determinant in portfolio optimization from a risk±return perspective.

Correlations are expected to be higher for ®rms within the same industry or
in the same region, than for ®rms in unrelated sectors. In addition, correlations
vary with the relative state of the economy in the business cycle. If there is a
slowdown in the economy, or a recession, most of the assets of the obligors will
decline in value and quality, and the likelihood of multiple defaults increases
substantially. The contrary happens when the economy is performing well:
default correlations go down. Thus, we cannot expect default and migration
probabilities to stay stationary over time. There is clearly a need for a struc-
tural model that bridges the changes of default probabilities to fundamental
variables whose correlations stay stable over time. Both CreditMetrics and
KMV derive the default and migration probabilities from a correlation model
of the ®rmÕs assets that will be detailed in the next section.

Contrary to KMV, and for the sake of simplicity, CreditMetrics/CreditVaR
I have chosen the equity price as a proxy for the asset value of the ®rm that is
not directly observable. This is another strong assumption in CreditMetrics
that may a�ect the accuracy of the method.

Table 8

Joint migration probabilities (%) with zero correlation for 2 issuers rated BB and A

Obligor #2 (single-A)

AAA AA A BBB BB B CCC Default

Obligor #1 (BB) 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

AAA 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

AA 0.14 0.00 0.00 0.13 0.01 0.00 0.00 0.00 0.00

A 0.67 0.00 0.02 0.61 0.40 0.00 0.00 0.00 0.00

BBB 7.73 0.01 0.18 7.04 0.43 0.06 0.02 0.00 0.00

BB 80.53 0.07 1.83 73.32 4.45 0.60 0.20 0.01 0.05

B 8.84 0.01 0.20 8.05 0.49 0.07 0.02 0.00 0.00

CCC 1.00 0.00 0.02 0.91 0.06 0.01 0.00 0.00 0.00

Default 1.06 0.00 0.02 0.97 0.06 0.01 0.00 0.00 0.00
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First, CreditMetrics estimates the correlations between the equity returns of
various obligors, then the model infers the correlations between changes in
credit quality directly from the joint distribution of equity returns.

The proposed framework is the option pricing approach to the valuation of
corporate securities initially developed by Merton (1974). The ®rmÕs assets
value, Vt, is assumed to follow a standard geometric Brownian motion, i.e.:

Vt � V0 exp l

��
ÿ r2

2

�
t � r

��
t
p

Zt

�
�1�

with Zt � N�0; 1�; l and r2 being respectively the mean and variance of the
instantaneous rate of return on the assets of the ®rm, dVt=Vt .

8 Vt is lognor-
mally distributed with expected value at time t, E�Vt� � V0 expfltg.

It is further assumed that the ®rm has a very simple capital structure, as it is
®nanced only by equity, St, and a single zero-coupon debt instrument maturing
at time T, with face value F, and current market value Bt. The ®rmÕs balance-
sheet can be represented as in Table 9.

In this framework, default only occurs at maturity of the debt obligation,
when the value of assets is less than the promised payment, F, to the bond
holders. Fig. 7 shows the distribution of the assetsÕ value at time T, the ma-
turity of the zero-coupon debt, and the probability of default which is the
shaded area below F.

MertonÕs model is extended by CreditMetrics to include changes in credit
quality as illustrated in Fig. 8. This generalization consists of slicing the dis-
tribution of asset returns into bands in such a way that, if we draw randomly
from this distribution, we reproduce exactly the migration frequencies shown
in the transition matrix. Fig. 8 shows the distribution of the normalized assetsÕ
rates of return, 1 year ahead, which is normal with mean zero and unit vari-
ance. The credit rating thresholds correspond to the transition probabilities in
Table 1 for a BB rated obligor. The right tail of the distribution on the right-
hand side of ZAAA corresponds to the probability for the obligor of being
upgraded from BB to AAA, i.e. 0.03%. Then, the area between ZAA and ZAAA

corresponds to the probability of being upgraded from BB to AA, etc. The left
tail of the distribution, on the left-hand side of ZCCC, corresponds to the
probability of default, i.e. 1.06%.

Table 10 shows the transition probabilities for two obligors rated BB and A,
respectively, and the corresponding credit quality thresholds.

This generalization of MertonÕs model is quite easy to implement. It assumes
that the normalized log-returns over any period of time are normally distrib-
uted with mean 0 and variance 1, and it is the same for all obligors within the

8 The dynamics of V �t� is described by dVt=Vt � ldt � rdWt , where Wt is a standard Brownian

motion, and
��
t
p

Zt � Wt ÿ W0 being normally distributed with zero mean and variance equal to t.
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same rating category. If pDef denotes the probability for the BB-rated obligor
of defaulting, then the critical asset value VDef is such that

pDef � Pr Vt� 6 VDef �
which can be translated into a normalized threshold ZCCC, such that the area in
the left tail below ZCCC is pDef . Indeed, according to (1), default occurs when Zt

satis®es

Assets Value

VT

V0

Probability of default

Time

F

= µ

= −






 +









µ
σ

σ Ζ

Fig. 7. Distribution of the ®rmÕs assets value at maturity of the debt obligation.

Table 9

Balance sheet of MertonÕs ®rm

Assets Liabilities/Equity

Risky assets: Vt Debt: Bt (F)

Equity: St

Total Vt Vt
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pDef � Pr
ln VDef=V0� � ÿ lÿ �r2=2�� �t

r
��
t
p

�
P Zt

�
� Pr Zt

�
6 ÿ ln V0=VDef� � � lÿ �r2=2�� �t

r
��
t
p

�
� N�ÿd2�; �2�

where the normalized return

r � ln Vt=V0� � ÿ lÿ �r2=2�� �t
r
��
t
p �3�

Fig. 8. Generalization of the Merton model to include rating changes.

Table 10

Transition probabilities and credit quality thresholds for BB and A rated obligors

Rated-A obligor Rated-BB obligor

Rating in 1 year Probabilities (%) Thresholds: Z�r� Probabilities (%) Thresholds: Z�r�
AAA 0.09 3.12 0.03 3.43

AA 2.27 1.98 0.14 2.93

A 91.05 ÿ1.51 0.67 2.39

BBB 5.52 ÿ2.30 7.73 1.37

BB 0.74 ÿ2.72 80.53 ÿ1.23

B 0.26 ÿ3.19 8.84 ÿ2.04

CCC 0.01 ÿ3.24 1.00 ÿ2.30

Default 0.06 1.06
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is N�0; 1�. ZCCC is simply the threshold point in the standard normal distri-
bution corresponding to a cumulative probability of pDef . Then, the critical
asset value VDef which triggers default is such that ZCCC � ÿd2 where

d2 � ln V0=VDef� � � lÿ �r2=2�� �t
r
��
t
p �4�

and is also called ``distance-to-default''. 9 Note that only the threshold levels
are necessary to derive the joint migration probabilities, and they are calculated
without the need to observe the asset value, and to estimate its mean and
variance. Only to derive the critical asset value VDef we need to estimate the
expected asset return l and asset volatility r.

Accordingly ZB is the threshold point corresponding to a cumulative
probability of being either in default or in rating CCC, i.e., pDef � pCCC, etc.

Further, since asset returns are not directly observable, CreditMetrics/
CreditVaR I chose equity returns as a proxy, which is equivalent to assume
that the ®rmÕs activities are all equity ®nanced.

Now, for the time being, assume that the correlation between asset rates of
return is known, and is denoted by q, which is assumed to be equal to 0.20 in
our example. The normalized log-returns on both assets follow a joint normal
distribution:

f rBB; rA; q� � � 1

2p
�������������
1ÿ q2

p exp
ÿ1

2�1ÿ q2� r2
BB

��
ÿ 2qrBBrA � r2

A

��
:

We can then easily compute the probability for both obligors of being in any
combination of ratings, e.g. that they remain in the same rating classes, i.e. BB
and A, respectively:

Pr� ÿ 1:23 < rBB < 1:37; ÿ 1:51 < rA < 1:98�

�
Z 1:37

ÿ1:23

Z 1:98

ÿ1:51

f rBB; rA; q� �drBB drA � 0:7365:

If we implement the same procedure for the other 63 combinations we obtain
Table 11. We can compare Table 11 with Table 8, the later being derived as-
suming zero correlation, to notice that the joint probabilities are di�erent.

Fig. 9 illustrates the e�ect of asset return correlation on the joint default
probability for the rated BB and A obligors. To be more speci®c, consider two
obligors whose probabilities of default are P1�PDef1� and P2�PDef2�, respec-
tively. Their asset return correlation is q. The events of default for obligors 1

9 Note that d2 is di�erent from its equivalent in the Black±Scholes formula since, here, we work

with the ``actual'' instead of the ``risk neutral'' return distributions, so that the drift term in d2 is the

expected return on the ®rmÕs assets, instead of the risk-free interest rate as in Black±Scholes.
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and 2 are denoted DEF1 and DEF2 , respectively, and P�DEF1;DEF2� is the
joint probability of default. Then, it can be shown that the default correlation
is 10

Table 11

Joint rating probabilities (%) for BB and A rated obligors when correlation between asset returns is

20%a

Rating of ®rst

company

(BB)

Rating of second company (A)

AAA AA A BBB BB B CCC Def Total

AAA 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03

AA 0.00 0.01 0.13 0.00 0.00 0.00 0.00 0.00 0.14

A 0.00 0.04 0.61 0.01 0.00 0.00 0.00 0.00 0.67

BBB 0.02 0.35 7.10 0.20 0.02 0.01 0.00 0.00 7.69

BB 0.07 1.79 73.65 4.24 0.56 0.18 0.01 0.04 80.53

B 0.00 0.08 7.80 0.79 0.13 0.05 0.00 0.01 8.87

CCC 0.00 0.01 0.85 0.11 0.02 0.01 0.00 0.00 1.00

Def 0.00 0.01 0.90 0.13 0.02 0.01 0.00 0.00 1.07

Total 0.09 2.29 91.06 5.48 0.75 0.26 0.01 0.06 100

a Source: CreditMetrics, JP Morgan.

10 See Lucas (1995).

Fig. 9. Probability of joint defaults as a function of asset return correlation (source: CreditMetrics,

JP Morgan).
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corr�DEF1;DEF2� � P �DEF1;DEF2� ÿ P1 � P2�������������������������������������������������
P1�1ÿ P1� � P2�1ÿ P2�p : �5�

The joint probability of both obligors defaulting is, according to MertonÕs
model,

P �DEF1;DEF2� � Pr V1� 6 VDef1; V26 VDef2�; �6�
where V1 and V2 denote the asset values for both obligors at time t, and VDef1

and VDef2 are the corresponding critical values which trigger default. Expres-
sion (6) is equivalent to

P �DEF1;DEF2� � Pr r1

�
6 ÿ d1

2 ; r26 ÿ d2
2

� � N2

ÿÿ d1
2 ;ÿ d2

2 ; q
�
; �7�

where r1 and r2 denote the normalized asset returns as de®ned in (3) for obl-
igors 1 and 2, respectively, and d1

2 and d2
2 are the corresponding distant to

default as in (4). N2�x; y; q� denotes the cumulative standard bivariate normal
distribution where q is the correlation coe�cient between x and y. Fig. 9 is
simply the graphical representation of (7) for the asset return correlation
varying from 0 to 1.

Example 1 (Continuation).

q � 20%;

P �DEF1;DEF2� � N2

ÿÿ d1
2 ;ÿ d2

2 ; q
� � N2�ÿ3:24;ÿ2:30; 0:20�

� 0:000054;

P1�A� � 0:06%;

P2�BB� � 1:06%;

it then follows :

corr �DEF1; DEF2� � 0:019 � 1:9%:

The ratio of asset returns correlations to default correlations is approxi-
mately 10±1 for asset correlations in the range of 20±60%. This shows that
the joint probability of default is in fact quite sensitive to pairwise asset
return correlations, and it illustrates the necessity to estimate correctly these
data to assess precisely the diversi®cation e�ect within a portfolio. In Section
5 we show that, for the benchmark portfolio we selected for the comparison
of credit models, the impact of correlations on credit-VaR is quite large. It is
larger for low credit quality than for high grade portfolios. Indeed, when the
credit quality of the portfolio deteriorates the expected number of defaults
increases, and this number is magni®ed by an increase in default correla-
tions.
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The statistical procedure to estimate asset return correlations is discussed in
the next section dedicated to KMV. 11

2.4. Analysis of credit diversi®cation (building block #2, continuation)

The analytic approach that we just sketched out for a portfolio with bonds
issued by 2 obligors is not doable for large portfolios. Instead, CreditMetrics/
CreditVaR I implement a Monte Carlo simulation to generate the full distri-
bution of the portfolio values at the credit horizon of 1 year. The following
steps are necessary.
1. Derivation of the asset return thresholds for each rating category.
2. Estimation of the correlation between each pair of obligorsÕ asset returns.
3. Generation of asset return scenarios according to their joint normal distri-

bution. A standard technique to generate correlated normal variables is
the Cholesky decomposition. 12 Each scenario is characterized by n stan-
dardized asset returns, one for each of the n obligors in the portfolio.

4. For each scenario, and for each obligor, the standardized asset return is
mapped into the corresponding rating, according to the threshold levels de-
rived in step 1.

5. Given the spread curves which apply for each rating, the portfolio is reval-
ued.

6. Repeat the procedure a large number of times, say 100 000 times, and plot
the distribution of the portfolio values to obtain a graph which looks like
Fig. 2.

7. Then, derive the percentiles of the distribution of the future values of the
portfolio.

2.5. Credit-VaR and calculation of the capital charge

Economic capital stands as a cushion to absorb unexpected losses related to
credit events, i.e. migration and/or default. Fig. 10 shows how to derive the
capital charge related to credit risk.

V �p�� value of the portfolio in the worst case scenario at the p% con®dence
level.
FV� forward value of the portfolio� V0�1� PR�.
V0� current mark-to-market value of the portfolio.

11 The correlation models for CreditMetrics and KMV are di�erent but the approaches being

similar, we detail only KMVÕs model which is more elaborated.
12 A good reference on Monte Carlo simulations and the Cholesky decomposition is Fishman

(1997, p. 223).
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PR� promised return on the portfolio. 13

EV� expected value of the portfolio� V0�1� ER�.
ER� expected return on the portfolio.
EL� expected loss�FVÿEV.

The expected loss does not contribute to the capital allocation, but instead goes
into reserves and is imputed as a cost into the RAROC calculation. The capital
charge comes only as a protection against unexpected losses:

Capital � EVÿ V �p�:

2.6. CreditMetrics/CreditVaR I as a loan/bond portfolio management tool:
Marginal risk measures (building block #2, continuation)

In addition to the overall credit-VaR analysis for the portfolio, Credit-
Metrics/CreditVaR I o�er the interesting feature of isolating the individual
marginal risk contributions to the portfolio. For example, for each asset,
CreditMetrics/CreditVaR I calculate the marginal standard deviation, i.e. the
impact of each individual asset on the overall portfolio standard deviation. By
comparing the marginal standard deviation to the stand-alone standard devi-

13 If there were only one bond in the portfolio, PR would simply be the 1-year spot rate on the

corporate curve corresponding to the rating of the obligor.

Fig. 10. Credit-VaR and calculation of economic capital.

80 M. Crouhy et al. / Journal of Banking & Finance 24 (2000) 59±117



ation for each loan, one can assess the extent of the bene®t derived from
portfolio diversi®cation when adding the instrument in the portfolio. Fig. 11
shows the marginal standard deviation for each asset, expressed in percentage
of the overall standard deviation, plotted against the marked-to-market value
of the instrument.

This is an important pro-active risk management tool as it allows one to
identify trading opportunities in the loan/bond portfolio where concentration,
and as a consequence overall risk, can be reduced without a�ecting expected
pro®ts. Obviously, for this framework to become fully operational it needs to
be complemented by a RAROC model which provides information on the
adjusted return on capital for each deal.

The same framework can also be used to set up credit risk limits, and
monitor credit risk exposures in terms of the joint combination of market value
and marginal standard deviation, as shown in Fig. 12.

2.7. Estimation of asset correlations (building block #3)

Since asset values are not directly observable, equity prices for publicly
traded ®rms are used as a proxy to calculate asset correlations. For a large
portfolio of bonds and loans, with thousand of obligors, it would still require
the computation of a huge correlation matrix for each pair of obligors. To
reduce the dimensionality of the this estimation problem, CreditMetrics/
CreditVaR I use a multi-factor analysis. This approach maps each obligor to
the countries and industries that most likely determine its performance. Equity
returns are correlated to the extent that they are exposed to the same industries

Fig. 11. Risk versus size of exposures within a typical credit portfolio.
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and countries. In CreditMetrics/CreditVaR I the user speci®es the industry and
country weights for each obligor, as well as the ``®rm-speci®c risk'', which is
idiosyncratic to each obligor and neither correlated to any other obligor nor
any index. 14

2.8. Exposures (building block #4)

What is meant by ``exposures'' in CreditMetrics/CreditVaR I is somewhat
misleading since market risk factors are assumed constant. This building block
is simply the forward pricing model that applies for each credit rating. For
bond-type products like bonds, loans, receivables, commitments to lend, letters
of credit, exposure simply relates to the future cash ¯ows at risk, beyond the 1-
year horizon. Forward pricing is derived from the present value model using
the forward yield curve for the corresponding credit quality. The example
presented in Section 2.2 illustrates how the exposure distribution is calculated
for a bond.

For derivatives, like swaps and forwards, the exposure is conditional on
future interest rates. Contrary to a bond, there is no simple way to derive the
future cash ¯ows at risk without making some assumptions on the dynamics of
interest rates. The complication arises since the risk exposure for a swap can be
either positive if the swap is in-the-money for the bank, or negative if it is out-
of-the-money. In the later case it is a liability and it is the counterparty who is

14 See also KMVÕs correlation model presented in the next section.

Fig. 12. Example of risk limits for a portfolio (source: CreditMetrics, JP Morgan).
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at risk. Fig. 13 shows the exposure pro®les of an interest rate swap for di�erent
interest rate scenarios, assuming no change in the credit ratings of the count-
erparty, and of the bank. The bank is at risk only when the exposure is positive.

At this stage we assume the average exposure of a swap given and it is
supposed to have been derived from an external model. In CreditMetrics/
CreditVaR I interest rates being deterministic, the calculation of the forward
price distribution relies on an ad hoc procedure:

Value of swap in 1 year; in rating R

� Forward risk-free value in 1 year

ÿ Expected loss in years 1 to maturity for the given rating R; �8�

where

Expected loss in years 1 to maturity for the given rating R

� Average exposure from year 1 to maturity

� Probability of default in years 1 through maturity

for the given rating R� �1ÿ recovery rate�:

�9�

The forward risk-free value of the swap is calculated by discounting the future
net cash ¯ows of the swap, based on the forward curve, and discounting them
using the forward Government yield curve. This value is the same for all credit
ratings.

The probability of default in year 1 through maturity either comes directly
from MoodyÕs or Standard & PoorÕs, or can be derived from the transition

8 10642
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Fig. 13. Risk exposure of an interest rate swap.
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matrix as previously discussed in Section 1. The recovery rate comes from the
statistical analyses provided by the rating agencies.

Example 2. Consider a 3-year interest rate swap with a $10 million notional
value. The average expected exposure between year 1 and 3 is supposed to be
$61 627. Given the 2-year probability of default, the distribution of 1-year
forward values for the swap can be calculated according to the above formulas
(4) and (5). The results are shown in Table 12, where FV denotes the forward
risk-free value of the swap.

Obviously, this ad hoc calculation of the exposure of an interest rate swap is
not satisfactory. Only a model with stochastic interest rates will allow a proper
treatment of exposure calculations for swaps as well as other derivative secu-
rities.

3. KMV 15 model

The major weakness of CreditMetrics/CreditVaR I is not the methodology,
which is rather appealing, but the reliance on transition probabilities based on
average historical frequencies of defaults and credit migration. The accuracy of
CreditMetrics/CreditVaR I calculations relies upon two critical assumptions:
®rst, all ®rms within the same rating class have the same default rate, and
second, the actual default rate is equal to the historical average default rate.
The same assumptions also apply to the other transition probabilities. In other
words, credit rating changes and credit quality changes are identical, and credit

Table 12

Distribution of the 1-year forward values of a 3-year interest rate swapa

Year-end rating Two-year default likelihood (%) Forward value ($)

AAA 0.00 1

AA 0.02 6

A 0.15 46

BBB 0.48 148

BB 2.59 797

B 10.41 3209

CCC 33.24 10,304

Default ± 50,860

a Source: CreditMetrics, JP Morgan.

15 KMV is a trademark of KMV Corporation. Stephen Kealhofer, John McQuown and Oldrich

Vasicek founded KMV Corporation in 1989.
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rating and default rates are synonymous, i.e. the rating changes when the de-
fault rate is adjusted, and vice versa.

This view has been strongly challenged by KMV. Indeed, this cannot be
true since default rates are continuous, while ratings are adjusted in a discrete
fashion, simply because rating agencies take time to upgrade or downgrade
companies whose default risk have changed. KMV has shown through a
simulation exercise that the historical average default rate and transition
probabilities can deviate signi®cantly from the actual rates. In addition, KMV
has demonstrated that substantial di�erences in default rates may exist within
the same bond rating class, and the overlap in default probability ranges may
be quite large with, for instance, some BBB and AA rated bonds having the
same probability of default. KMV has replicated 50 000 times, through a
Monte Carlo simulation, MoodyÕs study of default over a 25-year period. For
each rating they have assumed a ®xed number of obligors which is approxi-
mately the same as in MoodyÕs study. For each rating they have assumed that
the true probability of default is equal to the reported MoodyÕs average de-
fault rate over the 25-year period. KMV has also run the simulation for
several levels of correlation among the asset returns, ranging from 15% to
45%. A typical result is illustrated in Fig. 14 for a BBB obligor. Given an
exact default probability of 13 bp, the 25-year average historical default rate
ranges between 4 and 27 bp at the 95% con®dence level, for an asset corre-
lation of 15%.

The distribution is quite skewed so that the mean default rate usually ex-
ceeds the typical (median) default rate for each credit class. Thus the average
historical default probability overstates the default rate for a typical obl-
igor. 16

Unlike CreditMetrics/CreditVaR I, KMV does not use MoodyÕs or Stan-
dard & PoorÕs statistical data to assign a probability of default which only
depends on the rating of the obligor. Instead, KMV derives the actual prob-
ability of default, the Expected Default Frequency (EDF), for each obligor
based on a Merton (1974)Õs type model of the ®rm. The probability of default is
thus a function of the ®rmÕs capital structure, the volatility of the asset returns
and the current asset value. The EDF is ®rm-speci®c, and can be mapped into
any rating system to derive the equivalent rating of the obligor. 17 EDFs can be
viewed as a ``cardinal ranking'' of obligors relative to default risk, instead of the
more conventional ``ordinal ranking'' proposed by rating agencies and which

16 This can lead to adverse selection of corporate customers in banks. Indeed, if the pricing of

loans is based on this average historical default rate, then a typical customer will be overcharged

and may have an incentive to leave, while the worst obligors in the class will bene®t from an

advantageous pricing with regard to their actual credit risk.
17 See Section 2.1.4.
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relies on letters like AAA, AA, etc. Contrary to CreditMetrics/CreditVaR I,
KMVÕs model does not make any explicit reference to the transition proba-
bilities which, in KMVÕs methodology, are already imbedded in the EDFs.
Indeed, each value of the EDF is associated with a spread curve and an implied
credit rating.

As for CreditMetrics/CreditVaR I, KMVÕs model is also based on the option
pricing approach to credit risk as originated by Merton (1974). 18 Thus, credit
risk is essentially driven by the dynamics of the asset value of the issuer. Given
the current capital structure of the ®rm, i.e. the composition of its liabilities:
equity, short-term and long-term debt, convertible bonds, etc., once the sto-
chastic process for the asset value has been speci®ed, then the actual probability
of default for any time horizon, 1 year, 2 years, etc. can be derived. Fig. 7 in the
previous section depicts how the probability of default relates to the distri-
bution of asset returns and the capital structure of the ®rm, in the simple case
where the ®rm is ®nanced by equity and a zero-coupon bond.

KMV best applies to publicly traded companies for which the value of eq-
uity is market determined. The information contained in the ®rmÕs stock price
and balance sheet can then be translated into an implied risk of default as
shown in the next section.

18 See Vasicek (1997) and Kealhofer (1995, 1998). See also the previous section.

Fig. 14. Monte Carlo simulated distribution of average default rate for a BBB bond with a true

default rate of 0.13%.
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3.1. Actual probabilities of default: EDFs (expected default frequencies)

The derivation of the probabilities of default proceeds in 3 stages which are
discussed below: estimation of the market value and volatility of the ®rmÕs
assets; calculation of the distance-to-default, which is an index measure of
default risk; and scaling of the distance-to-default to actual probabilities of
default using a default database.

3.1.1. Estimation of the asset value, VA, and the volatility of asset return, rA

In the contingent claim approach to the pricing of corporate securities, the
market value of the ®rmÕs assets is assumed to be lognormally distributed,
i.e. the log-asset return follows a normal distribution. 19 This assumption is
quite robust and, according to KMVÕs own empirical studies, actual data
conform quite well to this hypothesis. 20 In addition the distribution of asset
return is stable over time, i.e. the volatility of asset return stays relatively
constant.

If all the liabilities of the ®rm were traded, and marked-to-market every day,
then the task of assessing the market value of the ®rmÕs assets and their vol-
atility would be straightforward. The ®rmÕs assets value would be simply the
sum of the market values of the ®rmÕs liabilities, and the volatility of the asset
return could be simply derived from the historical time series of the reconsti-
tuted assets value.

In practice, however, only the price of equity for most public ®rms is directly
observable, and in some cases part of the debt is actively traded. The alter-
native approach to assets valuation consists in applying the option pricing
model to the valuation of corporate liabilities as suggested in Merton (1974). 21

In order to make the model tractable, KMV assumes that the capital structure
is only composed of equity, short-term debt which is considered equivalent to

19 Financial models consider essentially market values of assets, and not accounting values, or

book values, which only represent the historical cost of the physical assets, net of their depreciation.

Only the market value is a good measure of the value of the ®rmÕs ongoing business and it changes

as market participants revise the ®rmÕs future prospects. KMV models the market value of

liabilities based on the assumed distribution of assets value, and the estimation of the current value

of the ®rm's assets. In fact, there might be huge di�erences between both the market and the book

values of total assets. For example, as of February 1998, KMV has estimated the market value of

Microsoft assets to US $228.6 billion versus US $16.8 billion for their book value, while for Trump

Hotel and Casino the book value which amounts to US $2.5 billion is higher than the market value

of US $1.8 billion.
20 The exception is when the ®rmÕs portfolio of businesses has changed substantially through

mergers and acquisitions, or restructuring.
21 See also Crouhy and Galai (1994), Bensoussan et al. (1994, 1995), and Vasicek (1997) for the

valuation of equity for more complex capital structures which, for example, include equity warrants

and convertible bonds.
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cash, long-term debt which is assumed to be a perpetuity, and convertible
preferred shares. 22 With these simplifying assumptions it is then possible to
derive analytical solutions for the value of equity, VE, and its volatility, rE:

VE � f �VA; rA;K; c; r�; �10�

rE � g�VA; rA;K; c; r�; �11�
where K denotes the leverage ratio in the capital structure, c is the average
coupon paid on the long-term debt and r the risk-free interest rate.

If rE were directly observable, like the stock price, we could resolve, si-
multaneously (10) and (11) for VA and rA. But the instantaneous equity vol-
atility, rE, is relatively unstable, and is in fact quite sensitive to the change in
assets value, and there is no simple way to measure precisely rE from market
data. 23 Since only the value of equity, VE, is directly observable, we can back
out VA from (10) which becomes a function of the observed equity value, or
stock price, and the volatility of asset returns:

VA � h�VE; rA;K; c; r�: �12�
To calibrate the model for rA, KMV uses an iterative technique.

3.1.2. Calculation of the DD
In the option pricing framework default, or equivalently bankruptcy, occurs

when assets value falls below the value of the ®rmÕs liabilities. In practice,
default is distinct from bankruptcy which corresponds to the situation where
the ®rm is liquidated, and the proceeds from the assets sale is distributed to the
various claim holders according to pre-speci®ed priority rules. Default is the
event when a ®rm misses a payment on a coupon and/or the reimbursement of
principal at debt maturity. Cross-default clauses on debt contracts are such
that when the ®rm misses a single payment on a debt, it is declared in default
on all its obligations. Fig. 15 shows the number of bankruptcies and defaults
for the period 1973±1994.

KMV has observed from a sample of several hundred companies that ®rms
default when the asset value reaches a level somewhere between the value of
total liabilities and the value of short-term debt. Therefore, the tail of the

22 In the general case the resolution of this model may require the implementation of complex

numerical techniques, with no analytical solution, due to the complexity of the boundary

conditions attached to the various liabilities. See, for example, Vasicek (1997).
23 It can be shown that rE � gE;ArA where gE;A denotes the elasticity of equity to asset value,

i.e., gE;A � �VA=VE��oVE=oVA� (cf. Bensoussan et al., 1994). In the simple MertonÕs framework,

where the ®rm is ®nanced only by equity and a zero coupon debt, equity is a call option on the

assets of the ®rm with striking price the face value of the debt and maturity the redemption date of

the bond. Then, the partial derivative oVE=oVA is simply the delta of the call with respect to the

underlying asset of the ®rm.
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distribution of asset value below total debt value may not be an accurate
measure of the actual probability of default. Loss of accuracy may also result
from other factors such as the non-normality of asset return distribution, the
simplifying assumptions about the capital structure of the ®rm. This can be
further aggravated by the fact that there are unknown undrawn commitments
(lines of credit) which, in case of distress, will be used and as a consequence
may unexpectedly increase liabilities while providing the necessary cash to
honor promised payments.

For all these reasons, KMV implements an intermediate phase before
computing the probabilities of default. As shown in Fig 16, which is similar
to Fig. 7, KMV computes an index called ``distance-to-default'' (DD). DD is
the number of standard deviations between the mean of the distribution of
the asset value, and a critical threshold, the ``default point'', set at the par
value of current liabilities including short term debt to be serviced over the
time horizon, plus half the long-term debt. Formally DD is de®ned as
follows:

Fig. 15. Bankruptcies and defaults, quarterly from 1973 to 1997 (source: KMV Corporation).

STD short-term debt,
LTD long-term debt,
DPT default point� STD + 1/2 LTD,
DD distance-to-default which is the distance between the expected

asset value in 1 year, E�V1�, and the default point, DPT expressed
in standard deviation of future asset returns:

DD � E�V1� ÿDPT

rA

:
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Given the lognormality assumption of asset values as speci®ed in (1) then,
according to (4), the DD expressed in unit of asset return standard deviation at
time horizon T, is

DD � ln�V0=DPTT � � �lÿ �1=2�r2�T
r
����
T
p ; �19�

where V0 is current market value of assets, DPTT the default point at time
horizon T, l the expected net return on assets, r the annualized asset volatility.

It follows that the shaded area below the default point is equal to N�ÿDD�:

3.1.3. Derivation of the probabilities of default from the DD
This last phase consists of mapping the DD to the actual probabilities of

default, for a given time horizon. These probabilities are called by KMV,
EDFs, for Expected Default Frequencies.

Based on historical information on a large sample of ®rms, which includes
®rms which defaulted one can estimate, for each time horizon, the proportion
of ®rms of a given ranking, say DD� 4, which actually defaulted after 1 year.
This proportion, say 40 bp, or 0.4%, is the EDF as shown in Fig. 17.

Asset Value

Time1 year

DPT = STD + ½ LTD

Expected growth of
assets, net

E(V)1

DD

Probability distribution of V

0

o

1

Fig. 16. Distance-to-Default (DD).
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Example 3.

then

DD � 1200ÿ 800

100
� 4:

Current market value of assets V0� 1000
Net expected growth of assets per annum 20%
Expected asset value in 1 year V0 (1.20)� 1200
Annualized asset volatility, r 100
Default point 800

Fig. 17. Mapping of the ``distance-to-default'' into the ``expected default frequencies'', for a given

time horizon.
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Assume that among the population of all the ®rms with a DD of 4 at one point
in time, say 5000 ®rms, 20 defaulted 1 year later, then:

EDF1 yr � 20

5000
� 0:004 � 0:4% or 40 bp:

The implied rating for this probability of default is BB�.
The next example is provided by KMV and relates to Federal Express on

two di�erent dates: November 1997 and February 1998.

Example 4. Federal Express ($ ®gures are in billions of US$).

This last example illustrates the main causes of changes for an EDF, i.e. the
variations in the stock price, the debt level (leverage ratio), and the asset vol-
atility which is the expression of the perceived degree of uncertainty on the
business value.

3.1.4. EDF as a predictor of default
KMV has provided the service ``Credit Monitor'' of estimated EDFs since

1993. EDFs have proved to be a useful leading indicator of default, or at least
of the degradation of the creditworthiness of issuers. When the ®nancial situ-
ation of a company starts to deteriorate, EDFs tend to shoot up quickly until
default occurs as shown in Fig. 18. Fig. 19 shows the evolution of equity value,
asset value, as well as the default point during the same period. On the vertical
axis of both graphs the EDF in percent, and the corresponding Standard &
PoorÕs rating are shown.

KMV has analyzed more than 2000 US companies that have defaulted or
entered into bankruptcy over the last 20 years, these ®rms belonging to a large
sample of more than 100 000 company-years with data provided by Compu-
stat. In all cases KMV has shown a sharp increase in the slope of the EDF
between 1 and 2 years prior to default.

November 1997 February 1998
Market capitalization
(price� shares outstanding)

$7.7 $7.3

Book liabilities $4.7 $4.9
Market value of assets $12.6 $12.2
Asset volatility 15% 17%
Default point $3.4 3.5

DD
12:6ÿ 3:4

0:15 � 12:6
� 4:9

12:2ÿ 3:5

0:17 � 12:2
� 4:2

EDF 0.06% (6 bp)
� AAÿ

0.11% (11 bp)
� Aÿ
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Changes in EDFs tend also to anticipate at least by 1 year the downgrading
of the issuer by rating agencies like MoodyÕs and Standard & PoorÕs, as shown
in Fig. 20. Contrary to MoodyÕs and Standard & PoorÕs historical default
statistics, EDFs are not biased by periods of high or low defaults. Distant-to-
default can be observed to decrease during recession periods where default
rates are high, and increase during periods of prosperity characterized by low
default rates.

3.1.5. EDFs and ratings
Standard & PoorÕs risk ratings represent default probabilities only, while

MoodyÕs factors also include a measure of the probability of loss, i.e.
EDF� LGD. Table 13 shows the correspondence between EDFs and the
ratings of Standard & PoorÕs, MoodyÕs, as well as the internal ratings of CIBC,
Nationbank and Swiss Bank Corp. The ratings of Nationbank and Swiss Bank
were published in their recent CLO transactions.

Within any rating class the default probabilities of issuers are clustered
around the median. However, as we discussed earlier, the average default rate
for each class is considerably higher than the default rate of the typical ®rm.

Fig. 18. EDF of a ®rm which actually defaulted versus EDFs of ®rms in various quartiles and the

lower decile. (The quartiles and decile represent a range of EDFs for a speci®c credit class.)
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Fig. 19. Assets value, equity value, short-term debt and long-term debt of a ®rm which actually

defaulted.

Fig. 20. EDF of a ®rm which actually defaulted versus Standard & Poor's rating.
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This is because each rating class contains a group of ®rms which have much
higher probabilities of default, due to the approximate exponential change in
default rates as default risk increases. These are ®rms which should have been
downgraded, but as of yet no downgrade has occurred. There are also ®rms
that should have been upgraded. Table 14 shows the variation of the EDFs
within each rating class.

Three conclusions follow from the previous analysis. First, since the rating
agencies are slow to change their ratings, the historical frequency of staying in
a rating class should overstate the true probability of keeping the same credit
quality. Second, the average historical probability of default overstates the true
probability of default for typical ®rms within each rating class, due to the
di�erence between the mean and the median default rates. Third, if both the
probability of staying in a given rating class, and the probability of default are
too large, then the transition probabilities must be too small.

KMV has constructed a transition matrix based upon default rates rather
than rating classes. They start by ranking ®rms into groups based on non-
overlapping ranges of default probabilities that are typical for a rating class.
For instance all ®rms with an EDF less than 2 bp are ranked AAA, then those
with an EDF comprised between 3 and 6 bp are in the AA group, ®rms with an
EDF of 7±15 bp belong to A rating class, and so on. Then using the history of

Table 13

EDFs and risk rating comparisons

EDF (bp) S&P MoodyÕs CIBC Nationbank SBC

2±4 P AA P Aa2 1 AAA C1

4±10 AA/A A1 2 AA C2

10±19 A/BBB+ Baa1 3 A C3

19±40 BBB+/BBBÿ Baa3 4 A/BB C4

40±72 BBBÿ/BB Ba1 4.5 BBB/BB C5

72±101 BB/BBÿ Ba3 5 BB C6

101±143 BBÿ/B+ B1 5.5 BB C7

143±202 B+/B B2 6 BB/B C8

202±345 B/Bÿ B2 6.5 B C9

Table 14

Variation of EDFs within rating classesa

Quantiles 10 25 50 75 90 Mean

AAA 0.02 0.02 0.02 0.02 0.10 0.04

AA 0.02 0.02 0.02 0.04 0.10 0.06

A 0.02 0.03 0.08 0.13 0.28 0.14

BBB 0.05 0.09 0.15 0.33 0.71 0.30

BB 0.12 0.22 0.62 1.30 2.53 1.09

B 0.44 0.87 2.15 3.80 7.11 3.30

CCC 1.43 2.09 4.07 12.24 18.82 7.21

a Source: KMV Corporation.

M. Crouhy et al. / Journal of Banking & Finance 24 (2000) 59±117 95



changes in EDFs we can produce a transition matrix shown in Table 15 which
is similar in structure to the one produced as Table 1 and reproduced as
Table 16.

However, the di�erence in the various probabilities between the two tables is
striking, but as expected. According to KMV, except for AAA, the probability
of staying in the same rating class is between half and one-third of historical
rates produced by the rating agencies. KMVÕs probabilities of default are also
lower, especially for the low grade quality. Migration probabilities are also
much higher for KMV, especially for the grade above and below the current
rating class.

These di�erences may have a considerable impact on the VaR calculations
such as those derived in the previous section related to CreditMetrics.

3.2. Valuation model for cash ¯ows subject to default risk

In CreditMetrics/CreditVaR I the valuation model is quite simplistic and
has already been described in Section 1. If 1 year is the time horizon, then the

Table 15

KMV 1-year transition matrix based on non-overlapping EDF rangesa

Initial rating Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 66.26 22.22 7.37 2.45 0.86 0.67 0.14 0.02

AA 21.66 43.04 25.83 6.56 1.99 0.68 0.20 0.04

A 2.76 20.34 44.19 22.94 7.42 1.97 0.28 0.10

BBB 0.30 2.80 22.63 42.54 23.52 6.95 1.00 0.26

BB 0.08 0.24 3.69 22.93 44.41 24.53 3.41 0.71

B 0.01 0.05 0.39 3.48 20.47 53.00 20.58 2.01

CCC 0.00 0.01 0.09 0.26 1.79 17.77 69.94 10.13

a Source: KMV Corporation.

Table 16

Transition matrix based on actual rating changesa

Initial rating Rating at year-end (%)

AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

a Source: Standard & PoorÕs CreditWeek (April 15, 1996).
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forward value of a bond is the discounted value of the future cash ¯ows beyond
1 year, where the discount factors are derived from the forward yield curve. To
each credit rating is associated a speci®c spread curve, and the distribution of
future values follows from the transition probabilities.

In KMV the approach is quite di�erent, and is consistent with the
option pricing methodology to the valuation of contingent cash ¯ows.
Given the term structure of EDFs for a given obligor, we can derive the net
present value of any stream of contingent cash ¯ows. The ®nal step, dis-
cussed in the next section, consists of deriving the loss distribution for the
entire portfolio.

More speci®cally, KMVÕs pricing model is based upon the ``risk neutral''
valuation model, also named the Martingale approach to the pricing of secu-
rities, which derives prices as the discounted expected value of future cash
¯ows. The expectation is calculated using the so-called risk neutral probabili-
ties and not the actual probabilities as they can be observed in the market place
from historical data or the EDFs. 24 Assuming, for the time being, that we
know how to derive the ``risk neutral probabilities'' from the EDFs, then the
valuation of risky cash ¯ows proceeds in two steps, ®rst the valuation of the
default-free component, and second, the valuation of the component exposed
to credit risk.

(i) Case of a single cash ¯ow

Example 5. Valuation of a zero coupon bond with a promised payment in
1 year of $100, with a recovery of �1ÿ LGD� if the issuer default, i.e. LGD
is the loss given default, assumed to be 40% in this example illustrated in
Fig. 21.

The risk-free component, $100�1ÿ LGD� is valued using the default-free
discount curve, i.e.

PV1 � PV�risk-free cash flow� � 100�1ÿ LGD�=�1� r� � $54:5;

where r denotes the 1-year risk-free rate assumed to be 10%.
The risky cash ¯ow is valued using the Martingale approach, i.e.

PV2 �risky cash flow� � EQ �discounted risky cash flow�;

where the expectation is calculated using the risk neutral probability. Denote
by Q, the risk neutral probability that the issuer defaults in 1 year from now,
and it is assumed to be 20%, then:

24 See, for example, Jarrow and Turnbull (1997, Ch. 5 and 6).
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PV2 � PV �risky cash flow� � 100LGD�1ÿ Q� � 0 � Q
1� r

� 100LGD�1ÿ Q�
1� r

� $29:1:

The present value of this zero coupon bond subject to default risk is the sum of
the default-free component and the risky component, i.e.

PV � PV1 � PV2 � $54:5� $29:1 � $83:6:

If the zero coupon bond were default free, its present value would simply be its
discounted value using the default-free interest rate, i.e.

$100=�1� r� � $90:9:

We can then compute the implicit discount rate, R, which accounts for default
risk, i.e.

R � r � CS;

where CS denotes the credit spread. It is solution of

100�1ÿ LGD�
1� r

� 100LGD�1ÿ Q�
1� r

� 100

1� r � CS
: �10�

Solving (10) for CS gives:

CS � LGD � Q � �1� r�
1ÿ LGD � Q : �11�

For this example, R� 19.6%, so that the 1-year credit spread for this issuer is
9.6%.

Fig. 21. Valuation of a single cash ¯ow subject to default risk.
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(ii) Generalized pricing model for a bond or a loan subject to default risk:
The previous approach can be easily generalized to the valuation of a stream

of cash ¯ows �C1; . . . ;Ci; . . . ;Cn�:

PV � �1ÿ LGD�
Xn

i�1

Ci

�1� ri�ti
� LGD

Xn

i�1

�1ÿ Qi�Ci

�1� ri�ti
; �12�

or in continuous time notation,

PV � �1ÿ LGD�
Xn

i�1

Ci e
ÿ~riti � LGD

Xn

i�1

�1ÿ Qi�Ci e
ÿ~riti ; �13�

where Qi denotes the cumulative ``risk neutral'' EDF at the horizon ti and
~ri � 1n�1� ri�:

Example 6. What is the value of a 5-year bond with a face value of $100, which
pays an annual coupon of 6.25%? Let us assume that the risk-free interest rate
is 5%, the LGD is 50% and the cumulative risk neutral probabilities are given
in the table below.

PV � PV1 � PV2 � 99:07:

This methodology also applies to simple credit derivatives like a default put:

Example 7. What is the premium of a 1-year default put which pays $1 in case
the underlying bond defaults?

Time Qi (%) Discount
factor
1=�1� ri�ti

Cash ¯ow PV1 (risk-free
cash ¯ows)

PV2 (risky cash
¯ows)

(1) (2) (3) (4) (5)� 1
2
(4) ´ (3) (6)� (5)[1ÿ(2)]

1 1.89 0.9512 6.25 2.97 2.92
2 4.32 0.9048 6.25 2.83 2.71
3 6.96 0.8607 6.25 2.69 2.50
4 9.69 0.8187 6.25 2.56 2.31
5 12.47 0.7788 106.25 41.37 36.21

Total 52.42 46.65
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Assume a risk neutral probability Q� 0.39% and an interest rate r� 5.8%, then

Premium � Q=�1� r� � 0:0039=1:058 � 0:37%:

3.3. Derivation of the risk neutral EDFs

Under the risk neutral probability measure the expected return on all se-
curities is the default free interest rate, r, for any horizon, say T. Therefore, the
risk neutral EDF, or Q, is de®ned as the probability of default, i.e. the prob-
ability that the value of the assets at time T falls below the default point DPTT ,
under the modi®ed risk neutral process for the asset value, V �t :

Q � Pr V �T
�
6DPTT

�
� Pr ln V0

h
� r
ÿ ÿ �1=2�r2

�
T � r

����
T
p

ZT 6 ln DPTT

i
� Pr ZT

�
6 ÿ ln V0=DPTT� � � r ÿ �1=2�r2� �T

r
����
T
p

�
� N�ÿd�2 �; �14�

where N��� is the cumulative standard normal distribution and

d�2 �
ln �V0=DPTT � � �r ÿ 1

2
r2�T

r
����
T
p ;

with �dV �t =V �t � � r dt � rdWt where Wt is a standard Brownian motion, and����
T
p

ZT � WT ÿ W0 is normally distributed with zero mean and variance equal to
T.

If the EDF was precisely the shaded area under the default point in Fig. 8,
then we would have exactly:

EDFT � N�ÿd2�
where d2 has already been de®ned in (3), i.e.

d2 � ln V0=DPTT� � � �lÿ �1=2�r2�T
r
����
T
p :

Since ÿd2 � ��lÿ r� ����Tp �=r � ÿd�2 , it thus follows that the cumulative risk
neutral EDF, QT , at horizon T can be expressed as

QT � N Nÿ1�EDF�
�

� �lÿ r�
r

����
T
p �

: �15�

Since lP r it follows that QT P EDFT i.e. the risk neutral probability of de-
fault, after adjusting for the price of risk, is higher than the actual probability
of default.

According to the CAPM

lÿ r � bp �16�
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with

b � beta of the asset with the market � cov �R;RM�
var �RM� � Rho

r
rM

; �17�

where R and RM denote the return of the ®rmÕs asset and the market portfolio,
respectively; r and rM are the volatility of the asset return and the market
return, respectively; Rho is the correlation between the assetÕs return and the
marketÕs return.

p � market risk premium for a unit of beta risk � lM ÿ r; �18�
where lM and l denote the expected return on the market portfolio and the
®rm's assets, respectively, and r is the risk-free rate.

It follows that

lÿ r
r
� bp

r
� Rho

p
rM

� RhoU ; �19�

where U � p=rM denotes the market Sharpe ratio, i.e. the excess return per unit
of market volatility for the market portfolio.

Substituting (19) into (15) we obtain:

QT � N Nÿ1�EDFT �
�

�Rho
p

rM

����
T
p �

: �20�

Rho is estimated by the linear regression of asset returns against market returns:

R � a� bRM � e; �21�
where a is the intercept of the regression and e the error term. Rho is simply the
square root of the R-squared of this regression.

In practice, p, the market risk premium is di�cult to estimate statistically,
and it varies over time. In addition, the EDF is not precisely the shaded area
under the default point in Fig. 7, and the asset return distribution is not exactly
normal. For all these reasons, KMV estimates the risk neutral EDF, QT , by
calibrating the market Sharpe ratio, U, and h in the following relation, using
bond data:

QT � N �Nÿ1�EDFT � �RhoU T h�; �22�
where h is a time parameter which should be, in theory, equal to 1/2.

Assuming we have derived the zero-coupon curve for an obligor, then ac-
cording to the pricing model (13) presented earlier:

eÿ ~Riti � ��1ÿ LGD� � �1ÿ Qi�LGD�eÿ~riti �23�
for i � 1; . . . ; n, where ~Ri is the continuously compounded zero-coupon interest
rate for the obligor, i.e. ~Ri � ln�1� Ri�, for maturity ti, ~ri the continuously
compounded zero-coupon risk-free rate i.e. ~ri � ln�1� ri�, for maturity ti, so
that
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~Ri ÿ ~ri � ÿ 1

ti
ln �1ÿ QiLGD�: �24�

Combining (22) and (24) we obtain:

~Ri ÿ ~ri � ÿ 1

ti
ln 1
� ÿ N�Nÿ1�EDFti� �Rho U T h�LGD

�
; �25�

where ~Ri ÿ ~ri is the obligorÕs corporate spread for maturity ti, which is directly
extracted from corporate bond data. 25 U and h are calibrated to produce the
best ®t of (25) in the least square sense.

3.4. Credit-VaR and calculation of the capital charge for a portfolio

KMV does not simulate the full forward distribution of the portfolio values
at the credit horizon, H. Instead, KMV derives analytically the loss distribu-
tion of the portfolio at this horizon. For the sake of simplicity assume that all
bonds mature at time T, greater than the credit horizon, H.

Denote by VH=ND the discounted value of the portfolio at time H, assuming
no default, and VH , the equilibrium value of the portfolio at time H, derived
from the valuation model presented in Section 2.2. The portfolio loss at time H
is de®ned as the di�erence between the riskless value of the portfolio and its
market value at that time:

L � VH=ND ÿ VH :

Note that VH is unknown at time 0, only its probability distribution can be
derived so that the loss, L, is a random variable.

Under some simplifying assumption it can be shown that the limiting dis-
tribution of the portfolio loss, when the portfolio is widely diversi®ed across
issuers, is a normal inverse for which it is relatively easy to compute the per-
centiles. The normal inverse distribution is highly skewed and leptokurtic.
Table 17 shows some values of the a-percentile, La, expressed as the number of
standard deviations from the mean, for several values of parameters. The a-
percentiles of the standard normal distribution are shown for comparison.

p is the probability of default of one bond in the portfolio (all bonds are
assumed to have the same probability of default).

q is the pairwise asset correlation, constant across all issuers.
a is the con®dence level.
The expected loss for the portfolio is EL� p and its standard deviation is

denoted by s.

25 An empirical issue is whether the corporate spread should be calculated over the Treasury

curve, or instead over the LIBOR (swap) curve. It seems that the best ®ts are obtained when

spreads are calculated over LIBOR.
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These values manifest the extreme non-normality of the distribution. Sup-
pose a lender holds a large portfolio of bonds issued by obligors where pairwise
asset correlation is q � 0:4 and where probability of default is p� 0.01. If the
desired con®dence level is a � 0:001 (10 bp), then the required capital should be
enough to cover 11 times the portfolio loss standard deviation.

To be more speci®c the capital charge is

a-percentileÿ expected spread revenue;

where

a- percentile is expressed in absolute value;

expected spread revenue � total spread revenueÿ expected loss

and

total spread revenue � annualized expected revenue over funding cost:

3.5. Asset return correlation model

CreditMetrics/CreditVaR I and KMV derive asset return correlations from
a structural model which links correlations to fundamental factors. By im-
posing a structure on the return correlations, sampling errors inherent in
simple historical correlations are avoided, and a better accuracy in forecasting
correlations is achieved. In addition, there is a practical need to reduce dra-
matically the number of correlations to be calculated. Assume that a bank is
dealing with N� 1000 di�erent counterparties. Then, we have N�N ÿ 1�=2
di�erent correlations to estimate, i.e., 499 500. This number is staggering.
Multi-factor models of asset returns reduce correlations to be calculated to
those between the limited number of common factors a�ecting asset returns.

It is assumed that the ®rmÕs asset returns are generated by a set of common,
or systematic risk factors, and idiosyncratic factors. The idiosyncratic factors
are either ®rm-, or country- or industry-speci®c, and do not contribute to asset
return correlations, since they are not correlated with each other and not
correlated with the common factors. Asset return correlations between two

Table 17

Values of (La ÿ p�=s for the normal inverse distribution

p q a � 0:1 a � 0:01 a � 0:001 a � 0:0001

0.01 0.1 1.19 3.8 7.0 10.7

0.01 0.4 0.55 4.5 11.0 18.2

0.001 0.1 0.98 4.1 8.8 15.4

0.001 0.4 0.12 3.2 13.2 31.7

Normal 1.28 2.3 3.1 3.7
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®rms are only explained by the common factors to all ®rms. Only the risks
associated with the idiosyncratic risk factors can be diversi®ed away through
portfolio diversi®cation, while the risk contribution of the common factors is,
on the contrary, non diversi®able.

For the sake of illustration, assume the asset return generating process for
all ®rms is

rk � ak � b1kI1 � b2kI2 � ek for k � 1; . . . ;N ; �26�
where N is the number of obligors (®rms), rk the asset return for ®rm k, ak the
component of asset return independent of common factors, I1, I2 are the
common factors, b1k, b2k are the expected changes in rk, given a change in
common factors 1 and 2, respectively, ek the idiosyncratic risk factor with zero
mean, and assumed to be uncorrelated with all the common factors, as well as
with the idiosyncratic risk factors of the other ®rms.

Then, from elementary statistics we can derive the well-known results in
portfolio theory: 26

var�rk� � r2
k

� b2
1kvar�I1� � b2

2k var�I2� � var�e2
k� � 2b1k b2kcov�I1; I2�; �27�

cov�ri; rj� � rij

� b1ib2jvar�I1� � b2ib2j var�I2� � �b1ib2j � b2ib1j�cov�I1; I2�:
�28�

If we denote by qij the asset return correlation between ®rm i and ®rm j, then

qij �
rij

rirj
: �29�

To derive the asset return correlation between any number of ®rms we only
need, according to (27)±(29), to estimate the bik, i.e., 2N parameters, and the
covariance matrix for the common factors, i.e., 3 parameters. In the previous
example where we considered N� 1000 ®rms, the implementation of this 2-
factor model would only require an estimate of 2003 parameters instead of
499 500 di�erent historical asset return correlations. For K common factors the
number of parameters to be estimated is KN � K�K ÿ 1�=2. If K� 10 then this
number becomes 10 045. This result can be easily generalized to any number of
common factors and idiosyncratic risk components.

26 See, for example, Elton and Gruber (1995, Ch. 8). While a multi-factor model can be

implemented directly, the model gains very convenient mathematical properties if the factors are

uncorrelated, i.e., orthogonal. There are simple techniques to convert any set of correlated factors

into a set of orthogonal factors. In that case we would have cov �I1; I2� � 0.
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The issue now is to specify the factor structure. CreditMetrics and KMV are
proposing relatively similar models, and in the following we will only present
KMVÕs model which is more comprehensive and elaborated. 27

KMV constructs a three-layer factor structure model as shown in Fig. 22:
· First level: a composite company-speci®c factor, which is constructed indi-

vidually for each ®rm based on the ®rmÕs exposure to each country and in-
dustry,

· second level: country and industry factors,
· third level: global, regional and industrial sector factors.
The ®rst level of the structure divides between ®rm speci®c, or idiosyncratic
risk, and common, or systematic risk. The ®rst, systematic risk is captured by a
single composite index, which is ®rm speci®c, and which is constructed as a
weighted sum of the ®rmÕs exposure to country and industry factors de®ned at
the second level of the structure:

rk � bkCFk � ek for all firms k � 1; . . . ;N ;

where rk is asset return for ®rm k, CFk the composite factor for ®rm k, bk the
®rm kÕs response to composite factor, i.e., expected change in rk given a change
in composite factor and ek ®rm kÕs speci®c risk factor.

The composite factor is constructed as the sum of the weighted country and
industry factors speci®ed at the second level of the structure:

CFk �
X

m

akmCm �
X

n

aknIn;

where Cm is rate of change on country risk factor m, In the rate of change on
industry risk factor n, akm the weight of ®rm k in country m, with the constraint
that

P
m akm � 1 and akn the weight of ®rm k in industry n, with the constraint

that
P

n akn � 1:

27 For a review of multi-factor models, see Elton and Gruber (1995) and Rudd and Clasing

(1988). The most widely used technique in portfolio management is the single index model, or

market model, which assumes that the co-movement between stock returns is due to a single

common index, the market portfolio. The return generating process for this model is described by

rk � ak � bkrM � ek where rM denotes the rate of return on the market portfolio. This model can

then be extended to capture industry e�ects beyond the general market e�ects. Rosenberg (1979)

has developed a model for predicting extra market covariance which relates not only on industry

factors, but also company speci®c descriptors like market variability which captures the risk of the

®rm as perceived by the market, earnings variability, index of low valuation and unsuccess,

immaturity and smallness, growth orientation, and ®nancial risk. (See Rudd and Clasing, 1988.)

Finally, a number of multi-factor models have been proposed which relate security returns to

macroeconomic variables. Excess returns are explained by the unexpected changes, or innovations,

in variables like in¯ation, economic growth as measured by unexpected change in industrial

production, business cycles as proxied by the corporate spread over Treasuries, long-term interest

rates, short-term interest rates, and currency ¯uctuations. (See Chen et al., 1986; Berry et al., 1988.)
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For example, consider a Canadian ®rm which has two lines of business, and
assume that the data is extracted from Compustat: 28

In the above table SIC denotes the Standard Industrial Classi®cation which
is a US based business classi®cation system.

To determine the weight by industry we average the asset and sales break-
downs. Thus for the above example the weight for Lumber and Forestry is

40% � �35%� 45%�=2;

and for Paper it is

Business line SIC Assets (%) Sales (%)

Lumber and forestry 2431 35 45
Paper production 2611 65 55
Total 100 100

28 Compustat is a database of ®nancial and economic information on ®rms.

Fig. 22. Factor model for asset return correlations (source: KMV Corporation).
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60% � �65%� 55%�=2:

Note that by construction the weights add up to 100%. The country exposures
are calculated in a similar manner and should also sum up to 100%. In this
example, we assume a 100% exposure to Canada. Then the composite factor
can be written as

CF � 1:0CCanada � 0:6Ipaper � 0:4Ilumber:

At the third level of the factor structure the risk of countries and industries is
further decomposed into systematic and idiosyncratic components. The sys-
tematic component is captured by basic factors like: global economic e�ect,
regional factor e�ect and sector factor e�ect. While the common factor is ®rm-
speci®c, the third level factors are the same for all countries and all industries:

Country
returns

� �
�

Global
economic

effect

24 35� Regional
factor
effect

24 35� Sector
factor
effect

24 35� Country
specific

risk

24 35;
Industry

return

� �
�

Global
economic

effect

24 35� Regional
factor
effect

24 35� Sector
factor
effect

24 35� Industry
specific

risk

24 35:
We can now express this factor structure into a form similar to (26) from

which it is easy to derive the asset return correlations (29).

4. CreditRisk+ model

CreditRisk+ 29 applies an actuarial science framework to the derivation of
the loss distribution of a bond/loan portfolio. Only default risk is modeled, not
downgrade risk. Contrary to KMV, default risk is not related to the capital
structure of the ®rm. In CreditRisk+ no assumption is made about the causes
of default: an obligor A is either in default with probability PA, or it is not in
default with probability 1ÿ PA. It is assumed that:
· for a loan, the probability of default in a given period, say 1 month, is the

same for any other month;
· for a large number of obligors, the probability of default by any particular

obligor is small, and the number of defaults that occur in any given period is
independent of the number of defaults that occur in any other period.

29 CreditRisk+ is a trademark of Credit Suisse Financial Products (CSFP). CreditRisk+ is

described in CSFP's publication (Credit Suisse, 1997).
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Under those circumstances, the probability distribution for the number of
defaults, during a given period of time (say 1 year) is well represented by a
Poisson distribution: 30

P �n defaults� � ln eÿl

n!
for n � 0; 1; 2; . . . ; �30�

where

l � average number of defaults per year;

l �
X

A

PA; where PA denotes the probability of default for obligor A:

The annual number of defaults, n, is a stochastic variable with mean l, and
standard deviation

���
l
p

. The Poisson distribution presents the nice property to
be fully speci®ed by only one parameter l. 31 For example, if we assume l� 3
then the probability of no default in the next year is

P �0 default� � 30 eÿ3

0!
� 0:05 � 5%

and the probability of exactly 3 defaults is

P �3 defaults� � 33 eÿ3

3!
� 0:224 � 22:4%:

4.1. CreditRisk+ framework

The distribution of default losses for a portfolio is derived in two stages, as
shown in Fig. 23.

4.1.1. Frequency of default events (building block #1)
So far we have assumed that a standard Poisson distribution approximates

the distribution of the number of default events. Then we should expect the
standard deviation of the default rate to be approximately equal to the square
root of the mean, i.e.,

���
l
p

, where l is the average default rate. According to Table
3, for obligors in rating category B, we expect a standard deviation of the default
rate to be close to

���������
7:27
p

, i.e., 2.69, while Table 3 reports an actual standard
deviation of 5.1. We derive similar observations for Baa and Ba obligors. Under

30 In a portfolio there is, obviously, a ®nite number of obligors, say m, therefore, the Poisson

distribution which speci®es the probability of n defaults, for n � 1; . . . ;1 is only an approximation.

However, if the number of obligors, m, is large enough, then the sum of the probabilites of

n� 1; n� 2; . . . defaults become negligible.
31 Expression (30) can be derived from the probability generating function for a portfolio of

independent obligors (see Credit Suisse, 1997, pp. 34, 35).
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those circumstances the Poisson distribution will underestimate the actual
probability of default. This is not a surprising result when we observe the
variability of default rates over time (see Fig. 1). As a matter of fact, we expect
the mean default rate to change over time depending on the business cycle.

Still the Poisson distribution can be used to represent the default process,
but with the additional assumption that the mean default rate is itself sto-
chastic with mean l and standard deviation rl. 32

Assuming a stochastic default rate makes the distribution of defaults more
skewed with a fat right tail (see Fig. 24).

4.1.2. Severity of the losses (building block #2)
In the event of default of an obligor, the counterparty incurs a loss equal to

the amount owned by the obligor (the exposure, i.e., the marked-to-market
value if positive, and zero otherwise, at the time of default) less a recovery
amount (see Table 6).

In CreditRisk+ the exposure for each obligor is adjusted by the anticipated
recovery rate, in order to calculate the loss given default. These adjusted ex-
posures are exogenous to the model, and are independent of market risk and
downgrade risk.

4.1.3. Distribution of default losses for a portfolio (building block #3)
In order to derive the loss distribution for a well-diversi®ed portfolio, the

losses (exposures, net of the recovery adjustments) are divided into bands, with
the level of exposure in each band being approximated by a single number.

32 CreditRisk+ assumes that the mean default rate is Gamma distributed. Mean default rate

volatility may also re¯ect the in¯uence of default correlation and background factors, such as a

change in the rate of growth in the economy which may in turn a�ect the correlation of default

events.

Fig. 23. CreditRisk+ risk measurement framework (source: CreditRisk+).
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Example. Suppose the bank holds a portfolio of loans and bonds from 500
di�erent obligors, with exposures between $50 000 and $1 million.

Note: In CreditRisk+ the exposure is the forward value of the facility times
the loss given default rate.
In the following table we only show the exposures for the ®rst 6 obligors.

The unit of exposure is assumed to be L� $100 000. Each band j, j � 1; . . . ;m,
with m� 10, has an average common exposure: mj� $100 000 ´ j.

Notation

Obligor A
Exposure LA

Probability of default PA

Expected loss kA�LA ´ PA

Obligor A Exposure ($)
(loss given
default) LA

Exposure
(in $100 000)
mj

Round-o�
exposure (in
$100 000) mj

Band j

1 150 000 1.5 2 2
2 460 000 4.6 5 5
3 435 000 4.35 5 5
4 370 000 3.7 4 4
5 190 000 1.9 2 2
6 480 000 4.8 5 5

Fig. 24. Distribution of default events (source: CreditRisk+).
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In CreditRisk+ each band is viewed as an independent portfolio of loans/
bonds, for which we introduce the following notation:

Then, by de®nition we have

ej � mj � lj:

Hence,

lj �
ej

mj
: �31�

Denote by eA the expected loss for obligor A in units of L, i.e.,

eA � kA

L

then, the expected loss over a 1-year period in band j, ej, expressed in units of L, is
just the sum of the expected losses eA of all the obligors belonging to band j, i.e.,

ej �
X

A:mA�mj

eA:

From (31) it follows that the expected number of defaults per annum in band j
is

lj �
ej

mj
�

X
A:mA � mj

eA

mj
�
X

A:mA�mj

eA

mA
:

The table below provides an illustration of the results of those calculations:

Notation

Common exposure in band j in units of L mj

Expected loss in band j in units of L ej

Expected number of defaults in band j lj

Band j Number of obligors ej lj

1 30 1.5 1.5
2 40 8 4
3 50 6 2
4 70 25.2 6.3
5 100 35 7
6 60 14.4 2.4
7 50 38.5 5.5
8 40 19.2 2.4
9 40 25.2 2.8

10 20 4 0.4
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To derive the distribution of losses for the entire portfolio we proceed as
follows:

Step 1: Probability generating function for each band.
Each band is viewed as a portfolio of exposures by itself. The probability

generating function for any band, say band j, is by de®nition:

Gj�z� �
X/
n�0

P �loss � nL�zn �
X/
n�0

P�n defaults�znmj ;

where the losses are expressed in the unit L of exposure.
Since we have assumed that the number of defaults follows a Poisson dis-

tribution (see expression (30)) then:

Gj�z� �
X1
n�0

eÿljln
j

n!
znmj � expfÿlj � ljz

mjg: �32�

To derive the distribution of losses for the entire portfolio we proceed as
follows:

Step 2: Probability generating function for the entire portfolio.
Since we have assumed that each band is a portfolio of exposures, inde-

pendent from the other bands, the probability generating function for the
entire portfolio is just the product of the probability generating function for
each band:

G�z� �
Ym
j�1

expfÿlj � ljz
mjg � exp

(
ÿ
Xm

j�1

lj �
Xm

j�1

ljz
mj

)
; �33�

where l �Pm
j�1 lj denotes the expected number of defaults for the entire

portfolio.
Step 3: Loss distribution for the entire portfolio.
Given the probability generating function (33) it is straightforward to derive

the loss distribution, since

P �loss of nL� � 1

n!

dnG�z�
dzn z�0j for n � 1; 2; . . . ;

these probabilities can be expressed in closed form and depend only on 2 sets of
parameters: ej and mj (see Credit Suisse, 1997, p. 26).

4.2. Extensions of the basic modelg

CreditRisk+ proposes several extensions of the basic one period, one factor
model. First, the model can be easily extended to a multi-period framework,
and second, the variability of default rates can be assumed to result from a
number of ``background'' factors, each representing a sector of activity. Each
factor, k, is represented by a random variable, Xk, which is the number of
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defaults in sector k, and which is assumed to be Gamma distributed. The mean
default rate for each obligor is then supposed to be a linear function of the
background factors, Xk. These factors are further assumed to be independent.

In all cases CreditRisk+ derives a closed form solution for the loss distri-
bution of a bond/loan portfolio which makes this approach very attractive
from a computational standpoint.

4.3. Advantages and limits of CreditRisk+

CreditRisk+ presents the advantage of being relatively easy to implement.
First, closed form expressions are derived for the probability of portfolio bond/
loan losses, which make CreditRisk+ computationally attractive. In addition,
marginal risk contributions by obligor can be easily computed. Second, Cred-
itRisk+ focuses only on default, requiring relatively few inputs to estimates. For
each instrument only the probability of default and the exposure are required.

The same limitations as for CreditMetrics and KMV apply, i.e., the meth-
odology assumes no market risk. In addition, CreditRisk+ ignores migration
risk so that the exposure for each obligor is ®xed and does not depend on
eventual changes in the credit quality of the issuer, as well as the variability of
future interest rates. Even in its most general form where the probability of
default depends upon several stochastic background factors, exposures are still
constant and not related to changes in these factors.

Finally, like CreditMetrics and KMV, CreditRisk+ does not deal with
nonlinear products such as, e.g., options and foreign currency swaps.

5. CreditPortfolioView 33

CreditPortfolioView is a multi-factor model which is used to simulate the
joint conditional distribution of default and migration probabilities for various
rating groups in di�erent industries, for each country, conditional on the value
of macroeconomic factors like the unemployment rate, the rate of growth in
GDP, the level of long-term interest rates, foreign exchange rates, government
expenditures and the aggregate savings rate. 34

CreditPortfolioView is based on the casual observation that default prob-
abilities, as well as migration probabilities, are linked to the economy (see
Fig. 1). When the economy worsens both downgrades as well as defaults in-
crease. It is the contrary when the economy becomes stronger. In other words,

33 CreditPortfolioView is a risk measurement model developed by Wilson (1987, 1997) and

proposed by McKinsey.
34 This model applies best to speculative grade obligors for which default probabilities are more

sensitive to the credit cycle than investment grade obligors.
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credit cycles follow business cycles closely. Since the state of the economy is, to
a large extent, driven by macroeconomic factors, CreditPortfolioView proposes
a methodology to link those macroeconomic factors to the default and mi-
gration probabilities.

Provided that data is available this methodology can be applied in each
country, to di�erent sectors and various classes of obligors which react dif-
ferently over the business cycle like construction, ®nancial institutions, agri-
culture, services, etc.

5.1. Default prediction model

Default probabilities are modeled as a logit function where the independent
variable is a country speculative grade speci®c index which depends upon
current and lagged macroeconomic variables:

Pj;t � 1

1� eÿYj;t
; �34�

where Pj;t is the conditional probability of default in period t, for speculative
grade obligors in country/industry j, Yj;t is the index value derived from a multi-
factor model described below.

Note that the logit transformation ensures that the probability (34) takes a
value between 0 and 1.

The macroeconomics index, which captures the state of the economy in each
country, is determined by the following multi-factor model:

Yj;t � bj;0 � bj;1Xj;1;t � bj;2Xj;2;t � � � � � bj;mXj;m;t � mj;t; �35�
where Yj;t is the index value in period t for the jth country/industry/speculative
grade, bj � �bj;0; bj;1; bj;2; . . . ; bj;m� are coe�cients to be estimated for the jth
country/industry/speculative grade, Xj;t � �Xj;1;t;Xj;2;t; . . . ;Xj;m;t� are period t
values of the macroeconomics variables for the jth country/industry, mj;t is the
error term assumed to be independent of Xj;t and identically normally dis-
tributed, i.e.

mj;t � N�0; rj�; and mt � N�0;Rm�;
where mt denotes the vector of stacked index innovations mj;t, and Rm is the j� j
covariance matrix of the index innovations.

The macroeconomics variables are speci®ed for each country. When su�-
cient data is available the model can be calibrated at the country/industry level.
Both the probability of default Pj;t, and the index, Yj;t, are then de®ned at the
country/industry level, and the coe�cient bj are calibrated accordingly.

In the proposed implementation, each macroeconomics variable is assumed
to follow a univariate, auto-regressive model of order 2 (AR2):

Xj;i;t � cj;i;0 � cj;i;1Xj;i;tÿ1 � cj;i;2Xj;i;tÿ2 � ej;i;t; �36�
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where Xj;i;tÿ1;Xj;i;tÿ2 denote the lagged values of the macroeconomic variable
Xj;i;t, cj � �cj;i;0cj;i;1cj;i;2� are coe�cients to be estimated, ej;i;t is the error term
assumed to be independent and identically distributed, i.e.

ej;i;t � N�0; rej;i;t� and et � N�0;Re�;
where et denotes the vector of stacked error terms ej;i;t of the j� i AR(2)
equations Re is the �j� i� �j� i� covariance matrix of the error terms et.

To calibrate the default probability model de®ned by (34)±(36), one has to
solve the system

Pj;t � 1

1� eÿYj;t
;

Yj;t � bj;0 � bj;1Xj;1;t � � � � � bj;mXj;m;t � mj;t;

Xj;i;t � cj;i;0 � cj;i;1Xj;i;tÿ1 � cj;i;2Xj;i;tÿ2 � ej;i;t;

�37�

where the vector of innovations Et is

Et � mt

et

� �
� N 0;R� �

with

R � Rm Rm;e

Re;m Re

� �
;

where Rm;e and Re;m denote the cross correlation matrices.
Once the system (37) has been calibrated, then one can use the Cholesky

decomposition of R, i.e., 35

R � AA0 �38�
to simulate the distribution of speculative default probabilities. First, draw a
vector of random variables Zt � N�0; I� where each component is normally
distributed N�0; 1�.

Then, calculate

Et � A0Zt

which is the stacked vector of error terms mj;t and ej;i;t. Using these realizations
of the error terms one can derive the corresponding values for Yj;t and Pj;t.

5.2. Conditional transition matrix

The starting point is the unconditional Markov transition matrix based on
MoodyÕs or Standard & PoorÕs historical data, which we denote by /M.

35 See footnote 12.
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Transition probabilities are unconditional in the sense that they are historical
averages based on more than 20 years of data covering several business cycles,
across many di�erent industries.

As we discussed earlier, default probabilities for non-investment grade
obligors is higher than average during a period of recession. Also downgrade
migrations increase, while upward migrations decrease. It is the opposite
during a period of economic expansion:

SDPt

/SDP
> 1 in economic recession;

SDPt

/SDP
< 1 in economic expansion;

�39�

where SDPt is the simulated default probability for a speculative grade obligor,
/SDPt the unconditional (historical average) probability of default for a
speculative grade obligor.

CreditPortfolioView proposes to use these ratios (39) to adjust the migration
probabilities in /M in order to produce a transition matrix, M, conditional on
the state of the economy:

Mt � M�Pj;t=/SDP�;
where the adjustment consists of shifting the probability mass into downgraded
and defaulted states when the ratio Pj;t=/SDP is greater than 1, and vice versa
if the ratio is less than 1. Since one can simulate Pj;t over any time horizon
t � 1; . . . ; T , this approach can generate multi-period transition matrices:

MT �
Y

t�1;...;T

M Pj;t=/SDP
ÿ �

: �40�

One can simulate many times the transition matrix (40) to generate the
distribution of the cumulative conditional default probability for any rating,
over any time period.

The same Monte Carlo methodology can be used to produce the conditional
cumulative distributions of migration probabilities over any time horizon.

5.3. Conclusion

KMV and CreditPortfolioView base their approach on the same empirical
observation that default and migration probabilities vary over time. KMV
adopts a microeconomic approach which relates the probability of default of
any obligor, to the market value of its assets. CreditPortfolioView proposes a
methodology which links macroeconomics factors to default and migration
probabilities. The calibration of this model necessitates reliable default data for
each country, and possibly for each industry sector within each country. An-
other limitation of the model is the ad-hoc procedure to adjust the migration
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matrix. It is not clear that the proposed methodology performs better than a
simple Bayesian model where the revision of the transition probabilities would
be based on the internal expertise accumulated by the credit department of the
bank, and the internal appreciation of where we are in the credit cycle given the
quality of the bankÕs credit portfolio.

These two approaches are somewhat related since the market value of the
®rmsÕ assets depends on the shape of the economy. It would then be interesting
to compare the transition matrices produced by both models.
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